Большой передел мира
269,989,162 525,218
 

  DeC ( Профессионал )
05 мар 2022 14:12:13

Самарский университет разрабатывает радиационно устойчивую электронику для космических аппаратов на основе карбида кремния

новая дискуссия Новость  325

4 марта 2022



Ученые Самарского национального исследовательского университета имени академика С. П. Королёва завершили разработку научной аппаратуры «Карбон-2», предназначенной для проведения в открытом космосе на борту орбитальной лаборатории «Бион-М2» испытаний опытных образцов отечественной космической электроники на основе карбида кремния.

Электронные компоненты космических аппаратов должны выдерживать самые экстремальные условия — широкий диапазон перепадов температуры, сильную космическую радиацию, перегрузки во время запуска, поэтому такую электронику терминологически даже принято называть экстремальной. По мнению ученых, карбидокремниевые компоненты по своей надежности и отказоустойчивости будут превосходить выпускаемые в настоящее время мировые аналоги.

«Аппаратура „Карбон-2“ позволит исследовать влияние факторов открытого космического пространства на свойства и характеристики опытных образцов тонкопленочных приборных структур на основе карбида кремния — этот полупроводниковый материал по твердости уступает лишь алмазу и нитриду бора и считается наиболее перспективным для применения в электронике, работающей в экстремальных условиях — при высоких температурах, гравитационных перегрузках и под воздействием радиации. Разработка аппаратуры уже завершена, подготовлена вся конструкторская документация, начаты работы по сборке», — рассказала ведущий научный сотрудник НИИ проблем моделирования и управления Самарского университета имени Королёва Любовь Курганская.

В настоящее время наиболее массовым полупроводниковым материалом является кремний, однако по ряду характеристик он значительно уступает карбиду кремнию, особенно если речь идет о силовой электронике или о работе в экстремальных условиях. Например, транзисторы на основе карбида кремния отличаются более высоким быстродействием, меньше нагреваются и выдерживают более высокое напряжение. Последние годы электронные компоненты из карбида кремния активно применяются в электроавтомобилях, в том числе в автомобилях Tesla, позволяя значительно увеличить запас хода машины. В одном из исследовательских центров NASA был проведен эксперимент — карбидокремниевые микросхемы отправили в печь, и они без сбоев проработали там 1000 часов при температуре 500°C. После этого для микросхем на Земле были воссозданы экстремальные условия атмосферы Венеры, известной своими облаками из серной кислоты, но микросхемы выдержали и это испытание.

«К космической электронике предъявляются самые высокие требования, и наша научная аппаратура „Карбон-2“ — это шаг к созданию более надежной отечественной электронной компонентной базы, устойчивой к разрушающему воздействию факторов космического пространства. Предыдущий наш эксперимент, проводившийся на спутнике „Бион-М“ с помощью аппаратуры „Карбон“ первого поколения, продемонстрировал механическую и химическую устойчивость разработанных нами структур к комплексному воздействию факторов космического полета», — подчеркнула Любовь Курганская.

В аппаратуре «Карбон-2» будут проводиться испытания прототипов приборных структур, включая оценку их работоспособности в условиях открытого космического пространства. Параметры исследуемых структур будут измеряться непосредственно во время полета и фиксироваться в памяти научной аппаратуры. После возвращения космического аппарата на Землю будет проведен анализ полученных данных, который позволит спрогнозировать параметры функционирования новых полупроводниковых приборов в условиях космического полета. Как ожидают ученые, приборы на основе карбидокремниевых плёнок могут оказаться на порядок надежней, точнее и долговечней своих аналогов, выпускаемых в настоящее время мировой космической промышленностью, и могут найти применение в дальних космических миссиях, например, при полётах на Марс.

Источник

Подмигивающий
  • +3.19 / 61
  • АУ
ОТВЕТЫ (0)
 
Комментарии не найдены!