Модернизация России
1,418,631 3,524
 

  DeC ( Слушатель )
23 июн 2016 17:39:35

Российские физики создали сверхточную "квантовую линейку"

новая дискуссия Дискуссия  862

Российские физики создали сверхточную "квантовую линейку"
23 июня, 11:43 UTC+3



МОСКВА, 23 июня. /ТАСС/. Физики из Российского квантового центра, Московского физико-технического института (МФТИ), Физического института им. П.Н. Лебедева (ФИАН) и парижского Института оптики придумали новый способ более точного измерения расстояний. Они использовали для этого эффект квантовых запутанных состояний, сообщает научно-популярный портал "Чердак" со ссылкой на пресс-службу МФТИ.

Для того, чтобы измерять расстояние в сотни километров с точностью до миллиардных долей метра, ученые использовали квантовые эффекты. Такая точность нужна для обнаружения гравитационных волн. Результаты исследований опубликованы в журнале Nature Communications.

"Эта техника позволяет использовать квантовые эффекты для повышения точности измерения расстояния между наблюдателями, которые отделены друг от друга средой с потерями. В такой среде (например, в атмосфере), квантовые характеристики света легко разрушаются", - говорит Александр Львовский, соавтор статьи, руководитель научного коллектива, выполнившего исследование, и профессор университета Калгари (Канада).



Ученые исследовали запутанные квантовые N00N-состояния фотонов, частиц света, в которых возникает суперпозиция пространственных положений не одного фотона, а сразу множества. Суперпозиция - это понятие из квантовой механики, которое значит, что элементарная частица может находиться в двух взаимоисключающих состояниях, то есть лазерный импульс из множества фотонов в N00N-состоянии одновременно находится в двух точках пространства.

При интерференции N00N-состояния создают полосы, расстояния между которыми меньше длины волны. В оптических интерферометрах - устройствах, которые использовались при открытии гравитационных волн в рамках проекта LIGO - расстояние между полосами равно длине волны - примерно 0,5-1 микрона. Соответственно, использование запутанных состояний повысит точность измерения оптических интерферометров.

Обмен запутанностями
Запутанные квантовые состояния "распутываются" когда проходят через среду даже с небольшими потерями. Ученые решили эту проблему, использовав "обмен запутанностями".

"Допустим, у Алисы и Боба, как в физике называют участников обмена квантовыми объектами, есть по запутанному состоянию. Если я возьму одну часть запутанного состояния от Алисы, вторую от Боба, и проведу над ними совместное измерение, то оставшиеся части состояний Алисы и Боба тоже станут запутанными, хотя до этого никогда не взаимодействовали", - говорит Львовский.

"В нашем эксперименте Алиса и Боб создают два запутанных состояния и посылают одну из частей в среду с потерями, которую моделирует затемненное стекло. Третий наблюдатель, посередине между Алисой и Бобом, проводит совместное измерение на этих частях. В результате происходит обмен запутанностями: оставшиеся части состояний Алисы и Боба оказываются в состоянии N00N. А поскольку эти части потерь не испытали, они выказывают свои квантовые свойства в полной мере", - объясняет ведущий автор статьи Александр Уланов.

По его словам, потери в стекле соответствовали потерям в атмосфере на расстоянии 50 километров между приемником и передатчиком, а в целом метод позволяет точно измерять расстояния в сотни километров (для сравнения, длина плеча интерферометра LIGO - около 4 километров).

Работа ученых позволит использовать в высокоточных измерениях эффект квантовых запутанных состояний и значительно увеличить точность измерений.

ТАСС
  • +0.70 / 11
  • АУ
ОТВЕТЫ (1)
 
 
  Удаленный пользователь
23 июн 2016 17:47:34
Сообщение удалено
1788bb
23 июн 2016 19:00:37
Отредактировано: 1788bb - 23 июн 2016 19:00:37

  • +0.00