АВИАЦИЯ и иные...
13,518,254 34,315
 

  Внимательный ( Слушатель )
23 фев 2017 22:23:49

Титановую кабину для бомбардировщика Су-34 делают по новой технологии

новая дискуссия Дискуссия  729

На Новосибирском авиационном заводе им. В.П. Чкалова налажено изготовление титановых кабин для бомбардировщика Су-34 при помощи электронно-лучевой сварки.



Новый российский бомбардировщик Су-34 заслуженно считается одной из самых безопасных для пилотов машин в мировой авиации. Для их защиты в боевых условиях используется титановая броня толщиной в дюйм и более. В то же время конструкции из титана едва ли не самые трудоемкие в изготовлении. Именно поэтому обработка этого металла во всех высокотехнологичных отраслях — космосе, авиа- и судостроении — считается самой сложной операцией.
Еще несколько лет назад основные операции по сварке деталей выполнялись специалистами сварочного производства — слесарями и сварщиками — вручную. Детали соединяли при помощи аргонно-дуговой сварки. Процесс занимал длительное время. Сварка листов толщиной до трех миллиметров производилась без специальной предварительной обработки соединяемых частей, а вот при большей толщине приходилось выполнять разделку кромок под сварку.
Параллельно с запуском нового самолета в Новосибирске разработали и внедрили первую автоматизированную установку для электронно-лучевой сварки. Из огромной камеры объемом 80 м 3 специальные насосы откачивают воздух и создают высокий вакуум порядка 10-5 мм рт. ст., необходимый для работы электронной пушки. Сварка ведется управляемым электронным лучом. Однако для серийного производства самолетов такая установка не годилась. Чтобы сваривать швы, расположенные в разных пространственных плоскостях, кабину приходилось каждый раз выдвигать из камеры и переустанавливать в новое положение. После этого процесс создания вакуума в камере вновь повторялся. Это отнимало слишком много времени. Поэтому изготовление первых кабин занимало порядка четырех месяцев.



На фото: вакуумная печь.
Специалисты компании «Сухой» и партнеры за два года создали инновационный комплекс оборудования, который кардинально изменил технологический процесс сварочного производства.Новая установка позволяет сваривать детали толщиной от 2 до 200 мм за один проход луча. Причем сварка может производиться не по двум осям, как раньше (горизонтально и вертикально), а по шести координатам. Сваривать можно как стыковые, так и угловые соединения. Манипулятор по заданной программе обеспечивает перемещение электронной пушки по любой траектории, в любую точку камеры."Если проводить какую-нибудь наглядную аналогию, то представьте паука, который передвигается по потолку, — вот такой принцип конструкции использован в нашей установке", — поясняет ведущий инженер-технолог Леонид Егорнов.

С точки зрения технологии, корпус кабины представляет собой сварную конструкцию из 19 деталей, которые свариваются электронно-лучевой установкой. Суммарная длина швов — 21 метр, скорость сварки — 720 миллиметров в минуту. Теперь для изготовления титановой кабины Су-34 требуется лишь четыре операционные установки изделия в вакуумную камеру, тогда как раньше было необходимо произвести 26 установок в камеру. В соседнем помещении расположена новая вакуумная печь для отжига, в которую помещают уже сваренную конструкцию.
«Отжиг позволяет снять внутренние напряжения, полученные в процессе сварки, что необходимо для предотвращения разрушения сварных соединений», — поясняет Леонид Егорнов.Параллельно с созданием установки (проектирование, изготовление и монтаж на НАЗ им. В.П.Чкалова) несколько молодых перспективных специалистов были направлены на учебу. Так, сварщик Александр Дырин к моменту запуска новой электронно-лучевой установки окончил кафедру «сварочное производство» Томского политехнического университета. До этого Александр занимался аргоно-дуговой сваркой, изготавливал титановые конструкции по традиционной технологии. Сейчас его основной рабочий инструмент напоминает скорее джойстик из компьютерной игры. С его помощью происходит перемещение электронно-лучевой пушки в вакуумной камере. А на операторском пульте Александр отслеживает десятки параметров работы установки.
Инженер установки Геннадий Вершинин и сварщик Павел Сусликов прошли дополнительное обучение в г. Ижевске в НИТИ «Прогресс». Начальником участка назначен грамотный специалист Алексей Пугаченко. Средний возраст команды — 30 лет.В конструкции Су-34 применили топливные баки тоже из титана. Их сваривают на этой же установке. Конструкция баков позволяет использовать их и в качестве силовых элементов всего самолета. Технология изготовления топливных баков строится по принципу сварки готовых деталей с минимальными припусками и последующей минимальной мехобработки. Практически все сварочное оборудование создавал отечественный поставщик — НИТИ «Прогресс» из Ижевска. В разработке новой технологии также участвовали Национальный институт авиационных технологий, специалисты ОКБ «Сухого» и НАЗ им. В.П. Чкалова. Подобные установки для электроно-лучевой сварки планируется использовать при создании новых самолетов и отдельных агрегатов на других предприятиях ОАК.
Титан среди металлов


Титан — это легкий прочный металл серебристо-белого цвета. Он имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент. Поэтому требуется нанесение специальных покрытий на инструмент, различных смазок. При обычной температуре покрывается защитной пленкой оксида, благодаря этому коррозионностоек в большинстве сред.
По удельной прочности титан не имеет соперников среди промышленных металлов. Даже такой металл, как алюминий, уступил ряд позиций титану, который всего в полтора раза тяжелее алюминия, но зато в шесть раз прочнее. И что особенно важно, титан сохраняет свою прочность при высоких температурах (до +500 °С, а при добавке легирующих элементов — до +650 °С), в то время как прочность большинства алюминиевых сплавов резко падает уже при +300 °С. Титан — очень твердый металл: он в 12 раз тверже алюминия, в 4 раза — железа и меди.Металл получил свое название в честь титанов, персонажей древнегреческой мифологии, детей Геи. Название элементу дал немецкий химик Мартин Клапрот. Он был одним из первооткрывателей этого химического элемента, обнаружив его в 1795 году в минерале рутиле, состоящем из оксида титана с примесью железа, олова, ниобия и тантала. В то время часто использовались французские названия химических элементов, отражающие их химические свойства. Клапрот предложил называть новый металл «титан». Он отметил, что невозможно определить его свойства только по его оксиду. Поэтому Клапорт выбрал для него имя из мифологии, подчеркивая «мифологичность» и непонятность элемента на тот момент времени. Ранее немец так же из мифологии выбрал название для другого открытого им элемента — урана.
Титан в виде сплавов является важнейшим конструкционным материалом в авиа- и ракетостроении. Добавление к титану других металлов или присадочных материалов, позволяет создавать сплавы с заданной макро-, микро-, кристалло-, суб-, наноструктурой, благодаря чему сам сплав и конструкции из него приобретают определенный уровень механических и эксплуатационных характеристик.Авиастроение — наиболее титаноемкая отрасль промышленности, где титановый лист используется для изготовления винтов двигателей, корпусов, крыльев, двигателей, обшивки, трубопроводов, крепежа и многого другого. В планере (планер — несущая конструкция летательного средства) современного гражданского самолета применяется 15 — 20% титановых деталей. Например, Ил-76 и Ил-76Т имеют 15% титановых деталей от общей массы планера, а при производстве Boeing нового типа 787 Dreamliner титановые прутки ВТ16 из России используются в 30% сборочных узлов посадочных устройств самолета. Это объясняется тем, что в современных сверхзвуковых самолетах требуются материалы, которые способны гарантировать надежную работу узлов под воздействием мощных силовых и температурных полей, излучений, высоких давлений. Кроме того, с увеличением в конструкциях самолетов доли композиционных материалов, требуется материал, который не коррозирует при взаимодействии с ними. Титановые сплавы ВТ23, ВТ23М идеально отвечают всем этим требованиям, обеспечивают авиалайнерам снижение веса и стоимости конструкции на 20-30%, в сравнении с другими материалами, а так же повышает их эксплуатационную надежность на 25-35%.


  • +0.69 / 19
  • АУ
ОТВЕТЫ (0)
 
Комментарии не найдены!