Миклухо ( Слушатель ) | |
22 июн 2013 11:03:20 |
ЦитатаПрочтите условия следующих задач.
1) Две бочки, вместимостью по А ведер, наполнены смесью спирта и воды. В первой эти жидкости смешаны в отношении m:n, во второй - в отношении p:q. По сколько ведер нужно отлить из каждой бочки, чтобы из отлитых частей можно было составить смесь, в которой спирта и воды поровну, а смешав то, что останется, получить смесь, в которой спирта и воды r:s ?
2) В двух чанах налита вода. Чтобы в обоих было поровну, нужно перелить из первого во второй столько, сколько там было, потом из второго в первый столько, сколько в первом осталось, и наконец из первого во второй столько, сколько во втором осталось. Тогда в каждом чане окажется по 64 ведра. Сколько ведер воды в них было сначала?
3) Три лица A, B и C сдали свои капиталы в рост. B имеет на 1000 р. больше, чем A, а С на 1500 р. больше, чем A; B получает одним процентом, а C двумя процентами больше, чем A; ежегодный доход B на 80 р., а доход С на 150 р. больше, ежегодного дохода A. Определить три капитала и доходы на них.
Попытайтесь решить эти задачи, иначе не вполне поймете пафос данной статьи. А для того, чтобы Вам было интереснее решать, сообщим, что взяты они из одного прекрасного и довольно старого задачника. Это "Сборникъ алгебраическихъ задачъ. Часть первая. Для классовъ третьяго и четвертаго. Шестое изданiе, перепечатанное с пятаго безъ изменеий". Издан в Москве, в 1897 году. На титульной странице имеет надпись: "Одобренъ, как весьма полезное пособiе, и удостоенъ премии Императора Петра Великаго". Напомним, что в дореволюционной гимназии годовую оценку "пять" можно было получить только в том случае, если можешь решать любую задачу из стабильного сборника! Итак, найдутся ли в нашем городе учащиеся, которые могли бы справиться с задачами за 4-й класс дореволюционной гимназии?