На Луна-25 будут использованы волоконно-оптические гироскопы
CBunny
Роскосмос разработал критически важный прибор, нехватка которого затормозила запланированный полет на Луну на два года. О том, как он работает, почему тяжелее американского аналога, и как ученые придумали систему космического ориентирования с волоконно-оптическими гироскопами, рассказал его конструктор.
Автоматическая станция «Луна-25» и макет «Биус-Л» для испытанийВ октябре 2021 года Россия планирует вернуться на Луну, запустив первый за 45 лет автоматический аппарат – «Луна-25». Запуск миссии планировался еще в 2014 году, но старт постоянно откладывался, в первую очередь, из-за неготовности аппарата и по причине западных санкций. Постоянные переносы миссии уже заставили выйти из нее зарубежных партнеров.Последний перенос на два года был связан с неготовностью российского прибора БИБ для системы навигации, заменить его на западный помешали санкции. Срочно разрабатывать ему замену (прибор «Биус-Л») из отечественных комплектующих поручили «Научно-производственному центру автоматики и приборостроения имени академика Н. А. Пилюгина». Как удалось выполнить задачу, и как космическое приборостроение справляется с импортозамещением, рассказал начальник отдела по разработке бесплатформенных инерциальных навигационных систем НПЦАП и главный конструктор прибора Алексей Казаков.
Прототип прибора «Биус-Л»— С весны 2020 года ваше предприятие разрабатывает прибор «БИУС-Л» для автоматической станции «Луна-25», которая будет запущена на поверхность Луны этой осенью. Какова его роль на аппарате?— Это бесплатформенный измерительный блок, который служит для измерения угловых скоростей и линейных ускорений, воздействующих на космический аппарат.Задача их измерять и передавать в бортовую систему управления аппарата. Управляющая машина, обработав данные, сможет скомпенсировать эти воздействия.За счет этого поддерживается стабилизация и определяется пройденный путь аппарата.
— Он работает на всем этапе полета вплоть до посадки?— Как только аппарат выйдет на орбиту Земли, прибор включается и начинает работать.
— Какие вообще известны способы решения этой задачи — ориентации корабля в космосе?— Есть несколько способов. Есть спутниковые датчики (АСН), которые используют сигналы GPS или ГЛОНАСС, как в мобильных устройствах. Есть звездные датчики, позволяющие аппарату ориентироваться по звездному небу. Фактически НПЦАП ориентируется на разработке и изготовлении инерциальных систем управления.
— К ним же относятся гироскопические устройства, в основе которых лежит, грубо говоря, вращающийся волчок?— Да, только они относятся к так называемым платформенным системам, где сам прибор находится в инерциальном пространстве, а корабль находится вокруг него и вращается каким-то образом, живя своей жизнью. Вообще гироскопия начала развиваться в конце 1950-х — начале 1960-х годов. Фактически первые поплавковые гироскопы в серийном виде у нас появились в 1960 году. Платформенные системы замечательно работают на ракетах «Протон-М», «Союз», они высокоточные, их принципы хорошо понятны, но недостатки связаны с большой массой и ценой.
— В чем же отличие бесплатформенных систем?— Эта система построена на принципе чувствительных элементов, которые измеряют угловые скорости, и линейные ускорения. В таких системах все изделие жестко крепится на корпусе ракеты. Прибор крутится вместе с изделием и измеряет свое вращение. Но из-за того, что бесплатформенный прибор должен измерять большой диапазон движений, он более грубоват.
Двухстепенной испытательный стенд— Если более грубоват, то в чем же преимущество?— Они легче, проще в изготовлении, так как не надо делать сложные механические привода, и дешевле. Поэтому для определенных целей их более, чем хватает. Например, когда на корабле есть другие внешние подсказчики – звездные приборы, солнечные датчики. С развитием электроники повышаются вычислительные возможности, качество обработки сигналов, шумов и т.д. Идет движение к появлению систем на новых чувствительных элементах и физических принципах.
— Как же работает «БИУС-Л»?— В нем по осям стоят волоконно-оптические гироскопы и акселерометры. Фактически такой гироскоп – это скрученное многократно оптоволокно, в данном приборе порядка 500 метров. Тут используется специальное оптоволокно, стойкое к воздействующим факторам.
— Отечественное?— Отечественное. Оптоволокно заказывает наш соисполнитель, находящийся в Саратове, изготавливает гироскоп и поставляет нам. Принцип работы основан на эффекте Саньяка. От источника излучения – светодиода – в волоконный контур запускаются в противоположных направлениях два световых луча одинаковой частоты. Когда волоконный контур неподвижен, оба луча до встречи проходят одинаковый путь, но, когда контур вращается один из лучей проходит больший путь, чем другой, и в точке их встречи смещается фаза световой волны. По величине этого смещения можно оценить скорость вращения волоконного контура.
— Прибор БИБ, который не удался, и которому вы делаете замену, был основан на том же принципе и весил 1,5 кг. Ваш – 10 кг. Почему?— Наш прибор делался в рамках импортозамещения и полностью построен на отечественной элементной базе, что играет свою роль. Во-вторых, этот прибор делается для космического назначения, поэтому во главу угла ставилась надежность.В нем установлена специальная трехгранная машина, обработчик, который обрабатывает сигналы чувствительных элементов. В три грани процессора приходит информация от чувствительных элементов, он постоянно их сравнивает и выдает команды в другую машину в системе управления, а та – на управляющие органы. Наконец, прибор имеет повышенную надежность и точность.
— Какую?— Точность прибора находится на уровне 0,2''/с. Эту точность мы подтвердили в рамках предварительных испытаний.
— На определенном этапе вместо БИБа на корабль предлагали поставить серийный прибор ASTRIX фирмы Airbus (4,5 кг), чего не случилось по понятным причинам. Можно сравнить параметры его и ваши?— Наш прибор получился на том же уровне по точностям, что и Astrix 1090.
— Если нет необходимости раскручивать тяжелый гироскоп, то прибор должен и меньше потреблять? Какова его мощность?— 35-40 Ватт.
— При этом на «Луне-25» будут стоять два прибора «Биус-Л»…— Да, для надежности ставятся два прибора, они развернуты относительно друг друга, и работают параллельно.В случае, если у системы управления возникает подозрение, что один из приборов показывает не совсем то, что на него воздействует, она начинает работать со вторым прибором.
— Что делается для обеспечения радиационной стойкости приборов?— Прибор изначально строится на элементной базе, которую мы выбираем с учетом радиационной стойкости. Корпус (конструктив) прибора имеет определенную толщину, это герметичный цилиндр из алюминиево-магниевого сплава. Основная задача – чтобы прибор был легкий, прочный, и имел защиту от внешних факторов. Плюс у сплава должна быть высокая теплопроводимость, чтобы снимать излишки тепла.
— А эта трехгранная машина – чьего производства?— Разработчик – НПЦАП. АО «Ангстрем» по нашему ТЗ делают для нас БИСы – большие интегральные схемы. Фактически владельцы этого БИСа— мы, они растят для нас кристаллы. Основное преимущество своего БИСа – мы его подстраиваем под свои задачи. Нам не нужно наращивать бешеную производительность, так как у нас есть оптимальная производительность, мощность, потребление, за счет чего мы более эффективно работаем.
— На каком этапе разработка прибора и когда вы его отдадите НПО Лавочкина?— Сейчас приборы прошли приемо-сдаточные испытания, когда проверяются характеристики прибора на соответствие своей документации и 5 мая были переданы в НПО Лавочкина. Сейчас активно участвуем в испытаниях в составе аппарата.
— Прибор создается только для «Луны-25»?— В ТЗ у нас прописано, что прибор создается для всей лунной программы.
— Было довольно неожиданно узнать, что у такого сложного и важного прибора такой молодой конструктор. Как вы попали в эту отрасль?— Я закончил МЭИ в 2008 году, на пятом курсе пришел сюда на практику, и здесь остался работать. Мне повезло, я попал в хороший коллектив.
— Сколько людей работало над прибором, какова средняя зарплата на предприятии?— В общем-то в разработке участвовало все предприятие. От цехов, где делают металл корпуса, вяжут жгуты, собирают и монтируют приборы и так далее. Есть филиалы, которые делают для нас же испытательную аппаратуру. Различные специалисты такие, как технологи, надежники, прочнисты, тепловики и другие… Работы при проведении испытаний и изготовлении прибора на нашем предприятии велись круглые сутки.Все очень хотели выполнить работу в срок и успеть в астрономическое окно для полета на Луну в этом году.Под моим руководством над этим прибором тоже работает молодой коллектив, это очень талантливые и действующие с большим энтузиазмом специалисты, и большое им спасибо. Средний возраст в моем коллективе – в районе 35 лет. К нам приходят работать из МИРЭА, МГТУ им. Баумана, МАИ, а также МГУ… Зарплата на предприятии у нас неплохая, в среднем 90 тыс. руб.
— Неплохо. Удачи вам, и попадания в этом году на Луну!— Спасибо.
Дополнение:Перспективный прибор БИБ (Блок инерциальный бесплатформенный) разработки НПО ИТ не прошел вибрационные испытания. БИБ все-таки полетит на «Луне-25», но в качестве экспериментального образца, не включенного в контур управления.Для сравнения, масса приборов составляет: для БИБ – 1,5 кг, для Astrix 1090 – 4,5 кг, для «Биус-Л» – 10 кг. Потребляемая мощность «Биус-Л» находится в диапазоне 35-40 Вт. Astrix 1090 значительно экономнее: ему требуется всего 14 Вт.