http://www.sib-science.info/ru/institutes/vodorodnoe-toplivo-problemy-27082021На
VIII Международном форуме технологического развития «Технопром-2021» сибирские ученые и промышленники обсудили перспективы применения водорода, энергетическую эффективность его производства и попытались ответить на вопрос: почему водородная энергетика до сих пор не получила широкого распространения?
«Экологические вызовы и исчерпание природных ресурсов требуют новых путей технологического развития. Один из них — водород. Его можно сжигать в непосредственно модифицированных газовых турбинах. Из топливных элементов извлекается электрическая энергия. Однако есть ряд проблем. Например, при использовании топливных элементов в летательном аппарате на высоте более девяти километров будет возникать неблагоприятное влияние воды. При сжигании водорода появляются оксиды азота. Электрохимические источники тока на сегодняшний день требуют большого количества оборудования. Тем не менее применение водородсодержащих смесей, в частности твердооксидных топливных элементов, в сложных циклах позволяет получить достаточно высокий КПД», — обозначил тематику дискуссии главный специалист АО «Объединенная двигателестроительная корпорация» Марат Джаудатович Гамируллин.
Топливные элементы как источник энергииДиректор
Института теплофизики им. С. С. Кутателадзе СО РАН академик
Дмитрий Маркович Маркович рассказал про топливные элементы как источники энергии. «В мире начинает набирать обороты индустрия водородных двигателей и заправочных станций. Переход на водородное топливо, конечно, не решит проблему глобального потепления, но локальную экологию в мегаполисах точно поправит. И здесь будет очевидная конкуренция между чисто электрическим и водородным транспортом. В ближайшей и отдаленной перспективе они будут постепенно вытеснять традиционный», — отметил ученый.
Академик рассказал про серию совместных работ
ИТ СО РАН и израильской компании GenCell, которая специализируется на водородных топливных элементах небольшой мощности (пять киловатт). Ученые
ИТ СО РАН занимались задачами тепломассообмена: от внутреннего теплообмена до создания цифрового двойника . Практически все узлы этих топливных элементов были разработаны при научном сопровождении новосибирского института.
«Сейчас есть договоренность с этой компанией, что при нашем участии в России эти топливные элементы будут адаптироваться для арктических условий, низких температур (пока они предназначены для условий до -20 °C). Мы почти договорились с одним из новосибирских предприятий из системы «Росатома», что они будут производить такие топливные элементы по лицензии, с нашим научным сопровождением», — сказал
Дмитрий Маркович.
Другая идея ученых — использовать не чистый водород, который сложно транспортировать, а генератор водорода из аммиака путем крекинга. Аммиак можно доставлять в любые точки и уже там перерабатывать в водород.
Также в
ИТ СО РАН разработаны воздушно-алюминиевые топливные элементы. Ученые нашли рецепты ингибиторов коррозии в электролите и оптимальный сплав алюминия с различными добавками. Лабораторный образец уже готов и находится в ожидании инвестора.
Недавно ученые
ИТ СО РАН закончили работу по трехгодичному гранту с китайскими партнерами, в рамках которого создавались подходы по малоэмиссионному сжиганию и синтезу газов применительно к энергетическим газотурбинным установкам.
«Конечно, наши подходы не могут быть напрямую реализованы для нужд авиации и большой энергетики, но они могут быть использованы для создания новых поколений топливных элементов для широкого спектра применений», — заключил академик.
Каталитические технологии генерации и хранения водорода и синтетических топливРуководитель отдела гетерогенного катализа ФИЦ «
Институт катализа им. Г. К. Борескова СО РАН» доктор химических наук
Павел Валерьевич Снытников рассказал про каталитические технологии генерации и хранения водорода и синтетических топлив.
«На мой взгляд, водород не стоит рассматривать как топливо. Это все-таки энергоноситель, который позволяет более длительно аккумулировать ту энергию, которая получается в возобновляемых источниках энергии», — подчеркнул ученый.
По словам Павла Снытникова, сохранять водород и использовать его длительное время помогут химические методы, которые будут переводить его в различное синтетическое, возобновляемое сырье, в том числе спирты, эфиры и углеводороды. Эти технологии уже достаточно хорошо реализованы в промышленности. Неплохим источником такого водорода может стать аммиак. В России аммиачное производство составляет более 20 миллионов тонн. Технологии отлажены и могут масштабироваться.
Ученый рассказал про технологии, которые разрабатываются в
ИК СО РАН. Так, в институте модернизируется криогенное хранение водорода. При сжижении в смести орто- и пароводорода происходит естественное выкипание водорода, потери составляют до 20 % в день. Но если каталитически перевести ортоводород в пароводород, то возможно длительное хранение. Эта технология была реализована в СССР, затем потерялась, а в последние годы ее воссоздали в
ИК СО РАН.
«Мы сделали опытный лабораторный стенд. Создана технологическая линия получения катализатора мощностью до пяти тонн в год. В ближайшее время институт готов по этой технологии поставлять катализатор заказчику, чтобы производство такого криогенного водорода можно было наладить в России», — сказал Павел Снытников.
В
ИК СО РАН разрабатываются каталитические методы получения водорода и водородсодержащих смесей. Так, перспективно получать водородсодержащий газ напрямую из углеродсодержащих компонентов (в первую очередь — из ископаемого сырья).
«Мы можем делать соединение для хранения водорода синтетически, используя электролизный водород, технологию улавливания углекислого газа. А затем получать бензин-дизель, синтетический метан, метанол, метиловый эфир. Эта технология позволяет задействовать уже готовую инфраструктуру по снабжению углеводородными топливами и получать водород там, где это необходимо. Она позволяет решить давнюю проблему курицы и яйца: чтобы водородная технология пошла в массы, нужна развитая инфраструктура, а для последней необходимо достаточное количество энергоустановок, работающих на водородных топливных элементах», — отметил ученый.
Недавно исследователи
ИК СО РАН выиграли проект, в рамках которого сегодня рассматривают концепт водородной заправки. На первой стадии там будет использоваться автотермическая конверсия, а на второй — совмещенно каталитический процесс с улавливанием углекислого газа.
Кроме того, сейчас в институте отрабатывается процесс получения водорода из зеленого аммиака. Водород здесь добывается не из природного газа, а при помощи возобновляемых источников энергии. Кроме того, перспективно получение аммиака на основе прямого электрохимического синтеза. Такой процесс происходит при нормальных температурах и давлениях, в отличие от стандартного синтеза аммиака. Можно использовать аммиак напрямую, а можно за счет каталитического разложения получать из него смесь водорода с азотом и использовать ее в топливных элементах.
Также сотрудники
ИК СО РАН взаимодействуют с Уфимским мотостроительным производственным объединением. Благодаря их методике можно получать из природного газа синтез-газ и использовать его для минимизации процессов образования оксидов азота. Это позволяет значительно улучшить показатели экологичности таких турбин. Работа находится на стадии опытных испытаний на стороне заказчика в Уфе.
Еще одно потенциальное перспективное направление — получение водорода из различных углеводородных топлив путем термического разложения (пиролиза).
«Сейчас компетенции
ИК СО РАН таковы, что мы можем из любого углеводородного, углевод-содержащего топлива, аммиака, неуглеводного топлива, используя различные каталитические процессы, получать синтез-газ, водородсодержащие смеси. Проводить доочистку до нужного качества и применять такой углеводород в топливных элементах, строить водородные заправки и получать ценные химические продукты», — отметил Снытников.
«Основные проблемы, которые стоят перед энергетикой будущего, — это экологичность и эффективность. Первая решается путем использования возобновляемых источников энергии и водородной энергетики. Для решения второй надо поднимать КПД, а также использовать распределенную энергетику. Эти требования можно в полной мере реализовать с использованием топливных элементов», — отметил ученый.
Преимущество твердооксидных топливных элементов в том, что они гибкие с точки зрения использования топлива. Благодаря им можно поставить установку, которая будет генерировать электроэнергию непосредственно под необходимую нагрузку. ТОТЭ генерируют электроэнергию, тепло и воду. Однако для их использования необходима высокая температура, что оборачивается жесткими требованиями к материалам и их совместимости. Механические свойства несущего слоя должны быть очень прочные. В этой связи ученые обращают внимание на топливные элементы, где есть металлическая или керамическая пористая поддержка.
Ниша
ИХТТМ СО РАН — микротубулярные ТОТЭ. Они имеют высокую удельную мощность и устойчивы к температурным градиентам. Ученые собираются использовать в производстве ТОТЭ аддитивные технологии.
По мнению
Александра Немудрого, сложность создания в России серийного производства ТОТЭ объясняется общей проблемой — «долиной смерти» между научной разработкой и производством. В институте невозможно полностью отработать технологию, которая пошла бы в серию. А производственники не стремятся вложить свои деньги в НИОКР и довести лабораторную разработку до серийного производства. От получения технологии до ее внедрения в производство должно пройти минимум шесть-семь лет.